jueves, 8 de enero de 2009

Centrales energéticas

CENTRALES NUCLEARES


Los elementos de elevado peso atómico, como el uranio, el torio o el plutonio, tienen densos núcleos compuestos por gran cantidad de protones y neutrones. Algunos isótopos de estos elementos, como el uranio 235, poseen núcleos inestables.

Si los golpeamos con un neutrón, se escinden en dos partes, produciendo una gran cantidad de energía y dos o tres neutrones. Estos neutrones podrán partir a su vez dos o tres núcleo
s, produciendo más energía y más neutrones libres listos para impactar con otros núcleos.

El resultado final es una reacción en cadena que, si no se controla, puede provocar una enorme liberación de energía en un instante. Las centrales nucleares regulan la reacción en cadena de manera que se produce una gran cantidad de energía de forma regular. Esta energía se utiliza para producir vapor, que a su vez moverá una turbina conectada a un generador para producir electricidad.

Las centrales nucleares necesitan para funcionar pastillas de "combustible nuclear", que suele ser uranio con gran concentración de su isótopo inestable. Estas pastillas se introducen en la vasija del reactor en una es
tructura conectada a un soporte móvil que contiene una sustancia capaz de atrapar neutrones, frenando así la reacción en cadena que se produce de manera espontánea en la masa del combustible nuclear.

La fisión nuclear continúa así de manera controlada. Si se necesita más energía, se retira el moderador. Para frenar o detener la producción de energía, se introduce por completo. Esto por lo que respect
a a la producción de calor por el reactor, pues las centrales nucleares, a partir de este punto, utilizan un circuito de agua-vapor muy similar al de las centrales térmicas convencionales.


Proceso térmico nuclear

La diferencia principal del proceso térmico nuclear con respecto al convencional radica en la existencia de un núcleo del reactor, equivalente a la cámara de combustión de las centrales térmicas convencionales, que debe estar separado del medio ambiente por varias capas de seguridad.

La transferencia del calor del núcleo al generador de vapor se puede hacer mediante un circuito cerrado intermedio, que asegura el aislamiento necesario. En un tipo muy corriente de reactor, el fluido que circula por este circuito es agua a presión. El llamado reactor de agua a presión se utiliza en las centrales de José Cabrera, Almaraz, Ascó, Van
dellós II y Trillo I.

Este circuito inte
rmedio falta en los llamados reactores de agua en ebullición, que tienen un único circuito de agua que se vaporiza en contacto con el reactor y pasa acto seguido a la turbina de vapor. De este tipo son las centrales de Santa María de Garoña y Cofrentes.

El tercer tipo de reactor se instaló en la central Vandellós II, actualmente fuera de servicio. Se denomina de grafito - gas, pues el n
úcleo utiliza grafito como moderador y un circuito de transferencia de calor de gas, por lo general dióxido de carbono.Proceso térmico nuclear

La diferencia principal del proceso térmico nuclear con respecto al convencional radica en la existencia de un núcleo del reactor, equivalente a la cámara de combustión de las centrales térmicas convencionales, que debe estar separado del medio ambiente por varias capas de seguridad.

La transferencia d
el calor del núcleo al generador de vapor se puede hacer mediante un circuito cerrado intermedio, que asegura el aislamiento necesario. En un tipo muy corriente de reactor, el fluido que circula por este circuito es agua a presión. El llamado reactor de agua a presión se utiliza en las centrales de José Cabrera, Almaraz, Ascó, Vandellós II y Trillo I.

Este circuito intermedio falta en los llamados reactores de agua en ebullición, que tienen un único circuito de agua que se vaporiza en contacto con el reactor y pasa acto seguido a la turbina de vapor. De este tipo son las centrales de Santa María de Garoña y Cofrentes.

El tercer tipo de reactor se instaló en la central Vandellós II, actualmente fuera de servicio. Se denomina de grafito - gas, pues el núcleo utiliza grafito como moderador y un circuito de transferencia de calor de gas, por lo general dióxido de carbono.




Aquí se muestra el funcionamiento de una central nuclear



CENTRALES NUCLEARES DE ESPAÑA



IMPACTO MEDIOAMBIENTAL

Se pueden cifrar los principales impactos medioambientales de la energía nuclear en los siguientes puntos:

  • Peligro de accidente nuclear.
  • Peligro de utilización bélica.
  • Producción de residuos radiactivos.
  • Contaminación térmica de las aguas.

El problema más acuciante y el más visible para la opinión pública, altamente sensibilizada sobre el particular, es el peligro de un accidente que pueda producir la liberación incontrolada de altas cantidades de radiactividad al medio ambiente. En 1979 se produjo el accidente de Three Mile Island en los EE.UU., el más grave ocurrido hasta la fecha en el mundo occidental. Se produjo una fusión parcial del núcleo del reactor de la central, pero gracias a que las medidas de seguridad existentes funcionaron supuso un mínimo escape de radiactividad al medio. Como resultado en el mundo occidental se incrementaron las medidas de seguridad y se implementaron planes de evacuación de las áreas adyacentes a las centrales nucleares.

Sin embargo, en la década siguiente, en 1986, este incidente se vio ampliamente superado por la catástrofe ocurrida en Chernobil, en el territorio de la extinta URSS, hoy Ucrania. Su impacto sobre el medioambiente, la economía y la salud de los habitantes de un amplia área de Bielorrusia, Rusia y Ucrania fue enorme. Como resultado del accidente se produjo la liberación de grandes cantidades de radiactividad a la atmósfera cuyos efectos se extendieron y se hicieron notar por un amplia área del continente europeo. Fue necesario evacuar de un amplio radio en torno a la central a centenares de miles de habitantes, a pesar de lo cual un número indeterminado y muy elevado de personas, especialmente trabajadores de los servicios de emergencia, quedaron expuestas a unas dosis muy altas de radiación que se cree que han causado ya un número muy grande de casos de cáncer.

Según un reciente y polémico informe de la OMS (septiembre de 2005) el número de fallecidos podría terminar llegando a 4000, aunque afirma que los fallecimientos efectivamente constatados hasta la fecha no superan los 50. Según este informe el número de casos de cáncer de tiroides en niños y adolescentes alcanza los 4000, aunque con un alto nivel de supervivencia entre los afectados. Otras fuentes, como la organización ecologista Greenpeace son bastante más pesimistas y estiman en 67.000 los fallecidos por causa del accidente en el periodo comprendido entre 1990 y 2004.

En cualquier caso las consecuencias han sido desoladoras para el futuro de la región, con grandes extensiones de terreno inutilizables en mucho tiempo por la contaminación, una fuerte pérdida demográfica y con la amenaza pendiente de nuevas fugas procedentes del sarcófago en que ha sido confinado el reactor nuclear, que al parecer se está deteriorando. Las causas del accidente estuvieron en las deficiencias estructurales del reactor, de un modelo cuyo uso estaba descartado en Occidente por su inestabilidad, y en los bajos niveles de preparación científica y técnica del personal implicado, sumados al secretismo, la opacidad y el desprecio general por la seguridad de la ciudadanía y el medioambiente de que hacía gala el sistema soviético, víctima de sus propias carencias intrínsecas.

En nuestro país el organismo competente en materia de seguridad nuclear es el Consejo de Seguridad Nuclear

Como resultado inmediato de estos accidentes la confianza de amplios sectores de la sociedad en la energía nuclear se ha visto seriamente disminuida, lo que ha supuesto un parón en los planes previstos de desarrollo de la misma, sobre todo en los países de la OCDE. Como consecuencia de los problemas relacionados con el calentamiento global y la inestabilidad en los mercados de petróleo, en la actualidad han crecido las voces favorables a la energía nuclear, poniendo de relieve el hecho de que supone producir energía eléctrica sin aumentar las emisiones de gases de efecto invernadero y con unos bajísimos niveles de emisión de radiactividad al medio, en condiciones normales.

Otro problema adicional es el originado por el hecho de que la tecnología nuclear puede ser de doble uso: civil y militar. La misma tecnología que puede permitir la creación de centrales nucleares para producir energía eléctrica con fines pacíficos puede modificarse para ser utilizada con fines bélicos y constituir una amenaza para la paz mundial. Aunque es cierto que la industria nuclear civil no ha estado nunca involucrada en el desarrollo de armas nucleares, el desarrollo de instalaciones de enriquecimiento levanta un fuerte recelo internacional. Recordemos el reciente caso de Irán o el más antiguo de Irak. Otros países como la India, Pakistán o Israel, que se han dotado de armamento nuclear, lo han hecho en reactores de investigación, que no eran de uso civil. Un peligro relacionado también con conflictos armados , que recientemente se ha puesto de relieve, es la posibilidad de sufrir atentados terroristas con potenciales consecuencias catastróficas.

Por último, pero no menos importante, es el problema de los residuos nucleares. Como consecuencia de la actividad de las centrales nucleares se generan isótopos radiactivos cuya peligrosidad y larga vida hace que constituyan un serio problema. Es cierto que hay otras actividades como la industria o la medicina que también generan estos residuos, pero son las centrales nucleares las que los originan en mayor cantidad y de mayor duración.

Los residuos radiactivos se clasifican en tres categorías:

  • Baja actividad.
  • Media actividad.
  • Alta actividad.
Los dos primeros, presentan menor problemática, por las moderadas dosis de radiación que emiten. En casos de muy baja actividad se opta por su dilución y dispersión en el medio ambiente, sólo en el caso de que ello no suponga elevar de forma inadmisible la radiactividad natural. En el resto de casos su tratamiento consiste en depositarlos en contenedores especiales que se almacenan en superficie, para después confinarlos en depósitos subterráneos controlados, en terrenos geológicamente estables. En nuestro país existe una instalación de este tipo, El Cabril (Córdoba), gestionada por ENRESA, Empresa Nacional de Residuos Radiactivos, con capacidad para 50.000 m3 para este tipo de residuos. Hasta 1992 también se vertieron en el mar encerrados en bidones especiales, con el grave riesgo que esto supone en caso de deterioro del contenedor, ya que una vez vertidos es imposible ningún tipo de supervisión de su estado.

El problema más grave lo plantean los residuos de alta actividad, restos del combustible utilizado en las centrales y de armamento atómico. Su vida útil puede llegar a varios cientos de miles de años. Como consecuencia, tras un periodo de decaimiento, el combustible gastado debe ser almacenado (ciclo abierto). Existe la alternativa de reprocesar el combustible usado (ciclo cerrado) y utilizarlo en plantas especiales, con el fin de utilizar el uranio y el plutonio presentes en los residuos y disminuir el volumen total de éstos. En cualquier caso, también el residuo final debe ser almacenado de forma segura por largo tiempo. La solución técnica que se maneja es su vitrificación y almacenamiento en contenedores especiales no corrosibles, que se emplazarían a gran profundidad, en depósitos refrigerados de alta seguridad en terrenos de una gran estabilidad geológica.

En Estados Unidos está ya operativa desde 1999, la instalación denominada WIPP (Waste Isolation Pilot Plant) para almacenamiento geológico profundo de residuos de alta actividad producidos en el programa de defensa y existen planes para crear una instalación de este tipo por parte del Departamento de Energía en el emplazamiento de Yucca Mountain. Países como Francia, Japón o Reino Unido han optado por el ciclo cerrado y el reprocesado, mientras que otros como Suecia lo han hecho por el ciclo abierto y su almacenamiento profundo. Nuestro país ha optado en la actualidad, por mantener estos residuos en las piscinas habilitadas al efecto dentro de las centrales nucleares, de acuerdo con el Quinto Plan General de Residuos Radiactivos, que retrasa la toma de cualquier decisión hasta el año 2010.

Por último, hay que hacer notar que la relativa corta vida de las centrales nucleares hace que se produzcan en su desmantelamiento grandes cantidades de residuos de alta, media y baja actividad que han de ser tratados por los procedimientos antes descritos.

MANEJO Y TRATAMIENTO DE LOS DESECHOS NUCLEARES

Los métodos utilizados en la evacuación de residuos radiactivos se basan en:

  1. Almacenar temporalmente los residuos radiactivos y esperar a que decrezca su radiactividad. Este método resulta idóneo para el caso de nucleidos radiactivos de vida corta, de forma que un plazo de tiempo, relativamente pequeño, sea suficiente para que dicha radiactividad disminuya a límites que permitan su evacuación directa al medio ambiente.

  2. Dispersar el material radiactivo en el medio ambiente previa dilución con materiales inertes. Este método se utiliza cuando se dispone de grandes cantidades de diluyentes, como son el aire y el agua. El primero suele ser normalmente el aire inactivo utilizado en la ventilación de los edificios sonde están ubicadas las instalaciones que producen residuos gaseosos radiactivos y la segunda suele ser el agua inactiva que se emplea como medio refrigerante, cual es el caso de los reactores nucleares. Este método se utiliza para evacuar cantidades pequeñas de radiactividad, inferiores a límites fijados.

  3. Llevar a cabo la concentración y almacenamiento del material radiactivo a largo plazo. Este confinamiento puede ser temporal o permanente, y se aplica a los residuos conteniendo nucleidos radiactivos de periodo largo, como son los productos de fisión cesio-137 y estroncio-90, procedentes de tratamiento de combustibles irradiados. El almacenamiento debe hacerse de forma que se considere exento de riesgos, lo que implica la necesidad de una vigilancia continua.

El método apropiado de tratamiento depende inicialmente del estado físico del material radiactivo líquido, sólido, gaseoso, de su categoría dentro de las clasificaciones propuestas y de sus propiedades fisicoquímicas particulares.


No hay comentarios:

Publicar un comentario